Exercise 4

Use power series to solve the differential equation.

$$
(x-3) y^{\prime}+2 y=0
$$

Solution

$x=0$ is an ordinary point, so the ODE has a power series solution centered here.

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Differentiate the series with respect to x.

$$
y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substitute these formulas into the ODE.

$$
(x-3) \sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Expand the first term.

$$
x \sum_{n=1}^{\infty} n a_{n} x^{n-1}-3 \sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Bring each coefficient inside the respective summand.

$$
\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=1}^{\infty} 3 n a_{n} x^{n-1}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

Because of n in the summand, the first series can be started from $n=0$.

$$
\sum_{n=0}^{\infty} n a_{n} x^{n}-\sum_{n=1}^{\infty} 3 n a_{n} x^{n-1}+\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

Make the substitution $n=k$ in the first series, the substitution $n=k+1$ in the second series, and the substitution $n=k$ in the third series.

$$
\sum_{k=0}^{\infty} k a_{k} x^{k}-\sum_{k+1=1}^{\infty} 3(k+1) a_{k+1} x^{(k+1)-1}+\sum_{k=0}^{\infty} 2 a_{k} x^{k}=0
$$

Simplify the second series.

$$
\sum_{k=0}^{\infty} k a_{k} x^{k}-\sum_{k=0}^{\infty} 3(k+1) a_{k+1} x^{k}+\sum_{k=0}^{\infty} 2 a_{k} x^{k}=0
$$

Now that all the sums start from $k=0$ and have x^{k} in the summand, they can be combined.

$$
\sum_{k=0}^{\infty}\left[k a_{k}-3(k+1) a_{k+1}+2 a_{k}\right] x^{k}=0
$$

The only way this infinite series can be zero is if the quantity in square brackets is zero.

$$
k a_{k}-3(k+1) a_{k+1}+2 a_{k}=0
$$

Solve for a_{k+1}.

$$
\begin{gathered}
(k+2) a_{k}-3(k+1) a_{k+1}=0 \\
a_{k+1}=\frac{k+2}{3(k+1)} a_{k}
\end{gathered}
$$

In order to determine a_{k}, plug in values for k and try to find a pattern.

$$
\begin{array}{ll}
k=0: & a_{1}=\frac{0+2}{3(0+1)} a_{0}=\frac{2}{3(1)} a_{0} \\
k=1: & a_{2}=\frac{1+2}{3(1+1)} a_{1}=\frac{3}{3(2)}\left[\frac{2}{3(1)} a_{0}\right]=\frac{3 \cdot 2}{6 \cdot 3} a_{0} \\
k=2: & a_{3}=\frac{2+2}{3(2+1)} a_{2}=\frac{4}{3(3)}\left(\frac{3 \cdot 2}{6 \cdot 3} a_{0}\right)=\frac{4 \cdot 3 \cdot 2}{9 \cdot 6 \cdot 3} a_{0}
\end{array}
$$

The general formula is

$$
a_{m}=\frac{(m+1)!}{(3 m)!!!} a_{0}=\frac{(m+1)!}{3^{m} m!} a_{0}=\frac{(m+1) m!}{3^{m} m!} a_{0}=\frac{m+1}{3^{m}} a_{0} .
$$

Therefore, the general solution is

$$
\begin{aligned}
y(x) & =\sum_{m=0}^{\infty} a_{m} x^{m} \\
& =\sum_{m=0}^{\infty} \frac{m+1}{3^{m}} a_{0} x^{m} \\
& =a_{0} \sum_{m=0}^{\infty} \frac{m+1}{3^{m}} x^{m}
\end{aligned}
$$

where a_{0} is an arbitrary constant.

